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Abstract

Objective—This study leveraged a state workers’ compensation claims database and machine 

learning techniques to target prevention efforts by injury causation and industry.

Methods—Injury causation auto-coding methods were developed to code more than 1.2 million 

Ohio Bureau of Workers’ Compensation claims for this study. Industry groups were ranked for 

soft-tissue musculoskeletal claims that may have been preventable with biomechanical ergonomic 

(ERGO) or slip/trip/fall (STF) interventions.

Results—On the basis of the average of claim count and rate ranks for more than 200 industry 

groups, Skilled Nursing Facilities (ERGO) and General Freight Trucking (STF) were the highest 

risk for lost-time claims (>7 days).

Conclusion—This study created a third, major causation-specific U.S. occupational injury 

surveillance system. These findings are being used to focus prevention resources on specific 

occupational injury types in specific industry groups, especially in Ohio. Other state bureaus or 

insurers may use similar methods.

BACKGROUND

Biomechanical ergonomic hazards (exposure to overuse/overexertion, forceful exertions, 

strenuous movements, prolonged static or awkward postures, repetitive movements, contact 

stress, and vibration) and slip/trip/fall (STF) hazards are the most commonly reported 

external causes of occupational injuries and illnesses involving days away from work (DAW) 

in the U.S. and Ohio.1–3 For 2013, Liberty Mutual reported that certain ergonomic hazards 

[overexertion involving outside source ($15.08 billion), other exertions or bodily reactions 

($4.15 billion), and repetitive motion ($1.82 billion)] and STFs [falls on same level ($10.17 

billion), falls to lower level ($5.40 billion), and slip or trip without a fall ($2.35 billion)] 

accounted for 63%, ~ $39 billion, of the total direct costs of disabling workplace injuries (>5 

missed workdays).2

According to the Bureau of Labor Statistics (BLS), in 2014, about half (U.S. = 53%, Ohio = 

49%) of occupational injuries and illnesses associated with at least one DAW were soft 
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tissue musculoskeletal diagnoses (eg, sprains, strains, or tears; carpal tunnel syndrome; 

tendonitis; and soreness, pain) and more than 75% of these musculoskeletal diagnoses could 

have been prevented with biomechanical ergonomic interventions or STF interventions.4 In 

2014, the single most common BLS nature of injury category grouping in Ohio (41.9%) and 

the U.S. (36%) was “sprains, strains, or tears.” In the U.S., 87% of sprains, strains, or tears 

were caused by biomechanical ergonomic hazards (62%) or STFs (25%).5,6

Practically speaking, existing U.S. occupational surveillance systems are best equipped for 

capturing injuries and illnesses with relatively short latency periods.7–9 Therefore, although 

some soft tissue musculoskeletal outcomes are classified as illnesses (eg, carpal tunnel 

syndrome), this article will refer to all of them as “injuries” hereafter.

The BLS, the Occupational Safety and Health Administration (OSHA), and other 

occupational public health or enforcement organizations refer to a specific group of soft 

tissue musculoskeletal diagnoses caused by exposure to biomechanical ergonomic hazards 

as “work-related musculoskeletal disorders,” (MSDs or WMSDs).10–12 However, 

biomechanical ergonomic hazards sometimes cause fractures, contusions, or other injuries 

that are not soft-tissue musculoskeletal diagnoses. Likewise, work-related soft-tissue 

musculoskeletal diagnoses caused by other hazards (eg, STFs, struck by, struck against) are 

not WMSDs. Similar to the BLS, this study applied two required criteria to define WMSDs: 

1) the diagnosis/nature of injury was one of several soft tissue musculoskeletal diagnoses, 

and 2) the external cause involved exposure to biomechanical ergonomic hazards.7–9 To 

emphasize prevention and avoid confusion introduced by using a clinical-sounding phrase, 

WMSD, this article uses Ergonomic or ERGO as a synonym for BLS-defined ergonomic 

WMSDs hereafter.

OCCUPATIONAL HEALTH SURVEILLANCE BY EXTERNAL CAUSE

To prevent Ergonomic and STF injuries, allocate resources for prevention, and evaluate 

intervention effectiveness, the most useful occupational injury surveillance systems, such as 

the BLS Survey of Occupational Injuries and Illnesses (SOII)13 and the Safety and Health 

Assessment and Research for Prevention Program of the Washington State Department of 

Labor and Industries (W-L&I), include both nature of injury and external cause. BLS SOII 

produces annual national estimates for nonfatal occupational injuries and detailed data by 

nature of injury, source, event/exposure, body part, and other variables related to length of 

disability and injured worker characteristics for cases with one or more DAW, according to 

North American Industry Classification System (NAICS) codes. However, due to small 

sample sizes, BLS SOII state-level estimates have limited usefulness for tracking Ergonomic 

and STF injuries by industry.

There is no single, comprehensive system that can estimate the total burden of occupational 

injuries. In the U.S., SOII and WC systems have been criticized by a number of studies for 

problems with under-reporting, failing to count occupational injuries and illnesses, or 

excluding some fatal or nonfatal cases (by design).14–16 For decades, the U.S. National 

Occupational Research Agenda (NORA) has identified improved surveillance of Ergonomic 

cases and STFs as a high national priority.17 As with many health issues, the burden of 
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occupational injuries and need for prevention activities vary geographically, impacting 

specific populations of workers unequally. Due to their proximity to the community and 

legal authority, U.S. State and local public health practitioners are best suited to lead 

community-specific efforts to prevent occupational injuries.18 However, they need detailed, 

state-specific information to prioritize intervention efforts, allocate limited resources, and 

guide policy decisions in their communities. Private and public WC insurer databases are an 

underutilized information source that can be used for public health purposes.19,20 Recently, 

more state WC bureaus have been sharing WC information from the first reports of injury 

with state departments of health. However, often main sources of external cause information 

are unstructured narrative fields that describe how the injury occurred.

In the U.S., WC data from Washington and the other three “exclusive” state-run systems 

(North Dakota, Ohio, and Wyoming) are particularly useful for occupational injury 

surveillance because they include detailed data on all insured employers and employees in 

those states. W-L&I has demonstrated how WC data from an exclusive, state-based insurer 

can be used to understand injury root causes, identify specific, higher-risk industry groups 

and occupations, and guide a variety of prevention activities.14–16,21

OHIO OCCUPATIONAL HEALTH SURVEILLANCE BY EXTERNAL CAUSE

Started in 2012, the Ohio SOII program surveys at least 4000 establishments annually.22 

State-level BLS SOII data come from surveys that obtain U.S. records from a weighted 

sample of employers who represent the industry mix at the State and national levels. 

However, due to the small sample size, the most detailed industry-level Ohio data reported 

by external cause or by nature was for NAICS sectors (two-digit NAICS), and BLS-defined 

ergonomic WMSD results were suppressed by industry. The Ohio Bureau of Workers’ 

Compensation (OHBWC) data represent the population of small and medium size employers 

in Ohio because employers (with the exception of sole proprietorships or partnerships) with 

less than 500 employees receive WC insurance from OHBWC. Larger (500 + employees), 

private employers and some large, public employers have the option to self-insure. OHBWC 

insures approximately two-thirds of Ohio workers. This arrangement provided an 

opportunity to use large, existing administrative databases to track and guide the prevention 

of work injuries for small to medium-sized employers in Ohio.

For years, the OHBWC Division of Safety and Hygiene used WC claims’ experience in 

terms of claim counts and costs to guide the work of 120 industrial hygienists, ergonomists, 

and safety consultants. At OHBWC, ergonomists focus on recommending interventions to 

prevent ergonomics-related injuries, whereas safety specialists focus on recommending 

safety interventions to prevent injuries caused by a traumatic, sudden, unanticipated event, 

or accident including injuries caused by STFs.

In 2010, OHBWC and the National Institute for Occupational Safety and Health (NIOSH) 

established a research partnership to conduct high-impact, collaborative, ergonomic, and 

safety research studies with a commitment to protect Ohio workers by reducing the 

frequency and severity of occupational injuries. One goal of the partnership was to create an 

occupational health surveillance system to identify ergonomic and STF prevention priorities 
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for specific industries and employers. However, limited resources were available to code 

more than 1 million claims in the OHBWC data warehouse by intervention category, using 

the two, existing, relevant fields (diagnosis codes and unstructured narratives describing 

what caused the injury). Previously, we piloted methods to auto-code external cause using 

three categories.23 Results were promising and identified limitations to address before 

scaling-up the program to auto-code all claims. As the second, main surveillance publication 

from the OHBWC-NIOSH partnership, this article expands upon earlier work that presented 

detailed methods used to link OHBWC WC data with NAICS code and estimated FTE 

counts by employer.24,25

OBJECTIVES

For OHBWC claims during the years 2001 to 2011, this study had three main objectives: 1) 

improve and apply automated methods to code claims into three intervention categories 

(Ergonomic, STF, or Other), 2) create an occupational injury surveillance system to track 

WC claim counts and claim rates per FTE by intervention category and NAICS codes, and 

3) identify industry groups or industries to prioritize for ergonomic, STF, or other safety 

prevention efforts (Supplemental Figure 1, http://links.lww.com/JOM/A369).

METHODS

In this article, “external cause” was used as a synonym for cause, event/exposure, risk factor, 

hazard, or external mechanism, which are used similarly in the literature. Also, although 

psychosocial or nonbiomechanical physical risk factors (eg, heat stress) do fall under the 

purview of ergonomics, this article focused on biomechanical ergonomic hazards, defined as 

excessive biomechanical stresses experienced during normal work activities, hereafter 

referred to as ergonomic.

Objective 1: Auto-coding WC Claims by Intervention Category

Up to 2007, OHBWC did not code external cause information for claims in its data 

warehouse. In 2007, OHBWC developed and started using an in-house external cause 

coding system for lost-time claims. In 2012, NIOSH researchers developed and piloted a 

fast, accurate machine-learning method to automatically code 1000 claims from one NORA 

industry sector to one of three mutually exclusive, exhaustive intervention categories: 1) 

ergonomic (ERGO), 2) STF, and 3) all other interventions combined (OTH).23 In this article, 

the ERGO abbreviation is only used when referring to BLS-defined WMSDs caused by 

ergonomic hazards using the case definition for this study (described below). To achieve the 

first objective for this article, the first step was to improve the piloted auto-coder by 

manually coding 9855 additional claims, using almost identical manual coding methods 

(Appendix B, Supplemental Figure 1, http://links.lww.com/JOM/A369).

OHBWC Data Warehouse

For this study, the main data field in the OHBWC data warehouse with information that 

could be used to determine external cause was a brief, unstructured narrative (“accident 

narrative”) describing the injury causation on the first report of injury. Additional claim 
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records in the OHBWC data warehouse include International Classifications of Diseases, 

Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes for all medical 

diagnoses and one diagnosis code was designated as the Optimal Return-to-Work (RTW) 

diagnosis. OHBWC uses a proprietary algorithm to select an Optimal RTW ICD-9-CM 

code, which identifies the diagnosis most likely to keep the injured worker off work for the 

longest period of disability. A 57-category variable (compared with 50 used in the pilot 

study), diagnosis category, was assigned to each claim based on the Optimal RTW ICD-9-

CM diagnosis code (Table 1).

Intervention Category Case Definitions

As described below, the 2012 Occupational Injury and Illness Classification System (OIICS) 

event/exposure classification rules (Section 2.4)26 and BLS-defined WMSD case 

definition10 were the basis for the ERGO, STF, and OTH intervention category case 

definitions used in this study. All claims were placed into one of the three intervention 

categories, based on the intervention approach most likely to prevent similar incidents. Most 

of our specific auto-coding methods are described thoroughly elsewhere.23

The ERGO intervention category only includes claims defined by these two criteria: 1) 

claims caused by overexertion or bodily reaction (ie, OIICS event/exposure codes beginning 

with a 7, such as: overexertion in lifting, repetitive use of tools, prolonged sitting while 

operating a motor vehicle), except single episodes due to climbing down, stepping down, 

loss of balance, or missteps (see Appendix C); AND 2) claims with an Optimal RTW 

diagnosis classified as a possible ERGO (Table 1). Some illustrative ERGO claim narrative 

examples included, “plowing and shoveling snow pulled muscle in lt. arm,” “23 years of 

service as a tire repair expert using both vibrational tools,” “Air guns and pounding on tires 

with my hands,” “bent over to pick-up material and my back went out,” and “counting dairy 

product in a cooler, pulling out and putting back in, repetitiously.”

The STF intervention category included claims with any diagnosis that were classified as 

OIICS event/exposures codes for “Falls, Slips, Trips” (codes beginning with a 4), with two 

minor exceptions (Appendix B). Example STF claims include narratives such as, “leaving 

work, slipped and fell on parking lot,” “walking through shop bay tripped over skid of 

springs smacked down on concrete,” “I was moving a car door with a fellow co-worker & 

lost my footing and stumbled & twisted so I didn’t drop the door & I have severe pain over 

my left hip & left leg.”

The OTH intervention category included all one-digit OIICS events/exposure Divisions 

excluded from the ERGO or STF case definitions—violence, transportation, fires and 

explosions, contact with objects or equipment, and exposure to harmful substances or 

environments. Also, when the claim narrative indicated overexertion or bodily reaction 

(Division 7) as the external cause, but the diagnosis category (eg., contusions, fractures) was 

excluded from the ERGO intervention category (Table 1), the claim was classified as OTH. 

For example, a foot fracture (excluded from ERGO) with the narrative, “I was pushing loads 

down a track. Something snapped in my left foot, I felt a pain” would be coded as an OTH 

claim. More illustrative OTH claim narrative examples include: “bag of frozen food fell on 

her foot,” “I was carrying a cat then it bit me on my right hand,” “tire blew hit the guardrail 
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and the truck turned over on its side and slid 75 ft.,” “injured worker (sic) received a shock 

to the arm when he grabbed a live line.”

Training and Testing the Auto-Coder

Most of our specific auto-coding methods and SAS code are described thoroughly 

elsewhere.23 In short, the auto-coding program used a Bayesian machine learning technique 

to calculate the probability a given claim belongs to each intervention category by 

considering words from the unstructured accident narrative and words from the diagnosis 

category descriptions.23,27,28 The probabilities were based on word frequencies associated 

with each intervention category in the training set.

Program modifications and additional manual coding for this study were completed to 

improve manual coding and auto-coding efficiency and accuracy across all NORA industry 

sectors and all diagnosis categories. For example, application of case definitions using rule-

based techniques for auto-coding could reduce possible misclassifications by excluding 

diagnosis categories that were excluded from the ERGO case definition. Similar to manual 

coding, when the Optimal RTW diagnosis category [eg, contusions, fractures (Table 1)] was 

excluded from the ERGO case definition (<0.01% of claims), the ERGO probability was 

changed to zero and the claim was classified as OTH or STF based on the highest 

probability score. Upon investigation, three claims reclassified for this reason (of ~100 

claims) had a secondary diagnosis that did fit the ERGO case definition.

To re-evaluate the auto-coder’s performance with the larger training set, 8600 manually 

coded claims were used to train the auto-coder, and 1000 randomly selected claims were 

used to test the accuracy of the intervention categories predicted by the auto-coder against 

the manually coded, “gold standard,” category values. The process of randomly splitting the 

9600 claims into a training set of 8600 and a prediction set of 1000 claims was repeated 25 

times and the overall percent agreement, and intervention category specific sensitivities and 

PPVs were averaged across the 25 iterations.

After testing was complete, the next step to achieve our first objective was to use the 9600 

randomly selected, manually coded claims as the training set to auto-code more than 1.2 

million other claims in the claims database. Finally, auto-coded intervention categories were 

overridden for manually coded claims with rare (Note a, Table 1) diagnosis categories or 

diagnosis categories that were under-represented in the training set and were too challenging 

for the auto-coder (Note c, Table 1). At an average manual coding rate of 2.2 claims/minute, 

it would have taken about 4.5 person-years to manually code 1.2 million claims. The revised 

computer program finished in less than 3 hours.

Objective 2: Create an Occupational Injury Surveillance System by Intervention Category

Data Linkage—Adding Employee Counts and NAICS Codes—Beginning in 2011, 

OHBWC used NAICS industry codes and number of quarterly employees obtained from the 

Ohio unemployment insurance (UI) agency to calculate claim rates by number of employees 

or estimated FTEs by industry codes.29 To achieve our second objective, OHBWC linked 

records for OHBWC-insured, private employers from calendar years 2001 to 2011 to UI 
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records using Federal Employer Identification Numbers common to both databases to obtain 

each employer’s NAICS industry code(s) and quarterly number of employees.24,25 Although 

15% of employers with multiple-locations had more than 1 NAICS code across locations 

(establishments), there was no way to join policy data by location. Therefore, for analyses 

by NAICS codes, we included 85% of multiple-location policies (representing 85% of 

claims) where at least 75% of employees were associated with the same six-digit NAICS 

code across all locations. Less than 1% of policies were excluded because more than one 

OHBWC policy matched to one UI master record.

NORA Industry Sectors—We assigned each employer to one of ten NORA industry 

sectors (NORA sectors) by year using each policy’s NAICS code.30 To simplify results for 

this article, four NORA sector titles were abbreviated: Agriculture, Forestry & Fishing 

(Agriculture); Healthcare and Social Assistance (Healthcare); Wholesale and Retail Trade 

(Trade); and Transportation, Warehousing, and Utilities (Transportation). Publicly owned 

employers (NAICS = 92212, 92214, or 9221) were absent from the Public Safety NORA 

sector in this study of privately owned employers, leaving Ambulance Services (NAICS = 

62191) as the only industry code in the NORA sector.

Denominator Adjustment—Estimating FTEs by Industry Group—The BLS Labor 

Productivity and Costs (LPC) program data31 provided information on number of employees 

and number of paid work hours in each NAICS industry group (four-digit level) on the 

national level. These LPC data were used to calculate a ratio of FTEs per employee (FTE 

defined as 2000 hours per year) in each NAICS industry group. Total FTEs in each NAICS 

industry group were estimated by multiplying UI employee count data for individual 

employers by the industry group’s ratio of FTEs per employee.

Claim Rate Calculations—Before calculating rates, data were reduced by summing 

numbers of claims and numbers of estimated FTEs by year stratified by NORA sectors, 

NAICS code levels (for up to three classification levels— NAICS subsectors (three-digit), 

industry groups (four-digit), or industries (five-digit)],32 and six categories of claim type by 

intervention category (ERGOlost-time, ERGOtotal, STFlost-time, STFtotal, OTHlost-time, and 

OTHtotal), where lost-time = eight or more DAW (Ohio waiting period is 7 days) and total = 

lost-time and medical-only claims with 0 to 7 DAW. In addition to yearly calculations, 

aggregate numbers of claims and estimated FTE-years were also calculated for the 11-year 

study period (2001 to 2011).

To calculate rates per 100 estimated FTE-years, numbers of claims were divided by the 

number of estimated FTE-years and multiplied by 100. Claims for 1.8% of policies that had 

an unknown number of employees were included in aggregate claim count results but 

excluded from rate calculations. More information about denominator calculations, NAICS 

determination, data reduction, and rate calculation methods was provided in the study by 

Wurzelbacher et al.24
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Objective 3: Industry Comparisons and Prioritization

The third objective for this study was to calculate Prevention Index (PI)33 ranks among 

industries according to NAICS subsectors (three-digit), industry groups (four-digit), and 

industries (five-digit)32 within NORA sectors. The PI, popularized by W–L&I, was designed 

to prioritize groups (ie, subsectors, industry groups, or industries) according to their need for 

prevention or further research. The PI is a value equal to the average of each group’s ranks 

for claim count and claim rate, in a descending order. The PI rank is the PI value ranked in 

an ascending order. In this study, sector, subsector, industry group, and industry PI ranks 

were stratified by claim type and intervention category.

To reduce instability of rate estimates due to low numbers of claims, we used inclusion 

criteria for the PI similar to those used by Anderson et al34 but scaled to apply to the 11-year 

time span (2001 to 2011). We included NAICS groups with 1) policies in 7 or more years, 2) 

≥ 100 FTEs for each year with policies, and 3) ≥ 55 WC claims during the 11-year study 

period. These criteria were applied to each NAICS code group that was ranked by PI for 

each of the six claim types by intervention category.

In addition, to create standard box-plots by NORA sector, claim type, and intervention 

category, we calculated the minimum, maximum, and quartile claim rates among industries 

(five-digit NAICS) within each NORA sector for 2001 to 2011 combined. Industries 

included in the box-plots met the same inclusion criteria described above for PI ranks.

Statistical Analyses—For this study, WC claim rates by NORA sector or NAICS groups 

were stratified by intervention category, claim type, and time period (yearly, 2001 to 2008, 

2009 to 2011, or 2001 to 2011). Poisson regression models with repeated measures by policy 

number were used to estimate annual changes in rates over time by intervention category, 

claim type, and NORA sector. Yearly trends were calculated for two time periods separately 

due to the substantial change in rates between 2008 and 2009 (23% and 14% decreases in 

lost-time and total claim rates, respectively). All analyses were conducted using SAS version 

9.3 (SAS Institute, Inc., Cary, NC).

Ethical Issues—This research was approved by the NIOSH Institutional Review Board. 

The requirement for informed consent was waived because the study involved the analysis of 

previously collected WC data. OHBWC shared claims and policy data with NIOSH where 

the only personally identifying information were claim number, date of birth, and rare 

instances where the first report of injury narrative that described what caused the claim 

included personal information.

RESULTS

Objective 1: Auto-coding WC Claims by Intervention Category

A SAS-based auto-coding program23,35 predicted 90% of the claims correctly, compared 

with 93.8% agreement between manual coders after consensus coding. There was essentially 

no difference in sensitivity (89.6%, ERGO = 89.6%, STF = 89.1%, OTH = 89.0%); however, 

positive predictive values were more variable among the three intervention categories 
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(ERGO = 90.6%, 90.6%, STF = 81.5%, OTH = 93.9%). In total, 1,213,655 claims (99%) 

were auto-coded by intervention category.

Objective 2: Claim Counts and Rates by Intervention Category and Industry Classification

Aggregate, descriptive policy, and claims data for 2001 to 2011 are presented in Table 2 by 

intervention category, by NORA sector, and across all NORA sectors (See Supplemental 

Table 1, http://links.lww.com/JOM/A370 for numerator data stratified by claims that were or 

were not used for claim calculations). During 2001 to 2011, OHBWC insured at least 

326,119 unique, private employers in Ohio, covering an estimated 25 million FTE-years. 

Among this population, 95% of estimated FTE-years came from the five largest NORA 

sectors: Services (39.5%), Manufacturing (17.2%), Trade (17%), Healthcare (13.2%), and 

Construction (8.3%).

Claim Counts—Claims among the five largest NORA sectors accounted for 91% of lost-

time claims and 94% of total claims during those 11 years (Table 2). ERGO and STF 

intervention categories accounted for more than two-thirds of lost-time claims (69%) and 

about half (44%) of total claims (Table 2). Lost-time claims as a proportion of total claims 

did vary by intervention category: ERGO = 0.31, STF = 0.28, and OTH = 0.10. For the six 

combinations of claim type and intervention category (ERGOlost-time, ERGOtotal, 

STFlost-time, STFtotal, OTHlost-time, and OTHtotal), claim counts decreased substantially 

across the 11-year time period, with a slight leveling off or increase after 2008. Yearly 

counts by claim type and intervention category are available by NORA Sector in Tables 3 

and 4.

The distribution of total claims by intervention categories within each diagnosis category is 

presented in Table 1 and lost-time, medical-only, and total claim counts are presented by 

intervention category in Table 5 for diagnosis categories that are either excluded from the 

ERGO case definition or included as possible ERGO claims based on diagnosis alone. 

Distribution of diagnosis categories varied by intervention category. The three most common 

diagnosis categories for ERGO were sprains/strains of the back or upper extremity and soft 

tissue/enthesopathy, whereas for STF, the most common categories were sprains/strains of 

the back or lower extremity and contusions (data not shown). All sprain/strain categories 

combined accounted for 33% of total claims. Half of all sprains/strains were classified as 

ERGOtotal and 35% as STFtotal (data not shown). Some diagnosis categories were dominated 

by one intervention category (eg, 82% of lower extremity sprains/strains were associated 

with STFtotal), while others were more evenly distributed [eg, neck sprains/strains were 

associated with ERGOtotal (32%), STFtotal (24%), and OTHtotal (44%)].

Claim Rates—Lost-time claim rates per 100 estimated FTE-years are presented by NORA 

sector and intervention category for 2001 to 2011 combined in Table 2; for 2001, 2008, and 

2011 in Table 6; and by year in Table 7 and Fig. 1A to C for the five largest NORA sectors. 

For 2001 to 2011, the Public Safety NORA sector (ie, Ambulance Services) ERGOlost-time 

claim rates were 2.2 times higher than the rate for the next highest sector (Transportation) 

and 7.3 times higher than the rate for the lowest sector (Agriculture) (Table 2). These rate 
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differences for the Public Safety NORA sector were greater for ERGOtotal claims and were 

all attributable to private Ambulance Services (NAICS = 62191) employers.

On average, from 2008 to 2009, there were 23% and 14% decreases in lost-time and total 

claim rates, respectively. However, decreases varied substantially between NORA sectors, 

for small sectors, for ERGO claims, and for STF claims (Table 6). Between the five largest 

NORA sectors, the rates decreased the most in the ERGO category for Services (16% to 

23%), in STF for Manufacturing (22% to 31%), in OTHlost-time for Services (22%), and 

OTHtotal for Manufacturing (19%). Some increases in claim rates from 2008 to 2009 were 

observed in two small NORA sectors, Mining (ERGOtotal up 14%, STFtotal up 8%) and 

Public Safety (ERGOlost-time up 5%, OTHtotal up 3%).

Trend estimates for percent changes by year are presented in Table 6 for two time periods 

(2001 to 2008 and 2009 to 2011). From 2001 to 2008, the rate of claims declined at least 5% 

per year for all claim types and intervention categories. From 2001 to 2008, compared with 

the other nine NORA sectors, Construction had the greatest yearly decline in lost-time claim 

rates across all intervention categories (ERGO = 12.6%, STF = 8.0%, and OTH = 8.9%) 

(Table 6). Yearly rates declined the most for ERGO (lost-time = 10.4%, total = 8.2%), 

followed by OTH (lost-time = 6.8%, total = 6.6%), and STF (lost-time = 5.8%, total = 5.0%) 

intervention categories. From 2009 to 2011, rate declines were still observed for ERGOtotal 

and STFtotal claims; however, ERGOlost-time and STFlost-time rates increased slightly. Trends 

varied by intervention category and NORA sector, although a similar pattern was observed 

for the five largest sectors, where lost-time rates increased from 2009 to 2010, but returned 

to levels below those of 2008 rates by 2011 (Fig. 1A to C).

Objective 3: Prevention Priorities

Prevention Index by Four-digit NAICS Codes—For lost-time claims, there were a 

total of 209 distinct industry groups that met the PI inclusion criteria; 163 (78%) met the 

criteria for all intervention categories and 29 (14%) met the criteria for two intervention 

categories. Per industry group, estimated FTE counts ranged from 4567 to 1.8 million, lost-

time claim rates ranged from 0.03 to 1.47, and claim counts ranged from 55 to 107,846.

The top 25 PI ranked four-digit NAICS groups and the top 10 claim rate ranked groups are 

presented in Figs. 2 to 4 as bubble plots, with lost-time claim rates on one axis and lost-time 

claim counts on the other axis, and bubbles sized proportional to the number of estimated 

FTE-years per industry group (See Supplemental Tables 2–4, http://links.lww.com/JOM/

A371, http://links.lww.com/JOM/A372, http://links.lww.com/JOM/A373 for NORA sectors, 

industry group descriptions, and values represented in Figs. 2 to 4, respectively). Forty-six 

industry groups across eight NORA sectors were represented in the top 25 for at least one 

intervention category. Three industry groups (3% of eligible industry groups) were highly 

ranked for all intervention categories: Foundation, Structure, and Building Exterior 

Contractors (NAICS = 2381), Employment Services (NAICS = 5613), and Waste Collection 

(NAICS = 5621). The highest ranked industry groups by intervention category were Skilled 

Nursing Facilities (NAICS = 6231) for the ERGOlost-time category, General Freight Trucking 

(NAICS = 4841) for STFlost-time, and Foundries (NAICS = 3315) for OTHlost-time. 

Compared with lost-time PI results by industry group, total claim PI ranks identified one 
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additional top 25 industry group, General Medical and Surgical Hospitals (NAICS = 6221), 

ranked 24th for ERGOtotal claims. Several other industry groups had high total claim rates 

(top quartile) but low PI ranks of at least 80. We focused this article, tables, and figures on 

lost-time claim results because lost-time claims are more severe and less vulnerable to 

under-reporting (See Supplemental Tables 5 and 6, http://links.lww.com/JOM/A374, http://

links.lww.com/JOM/A375 to examine the data in more detail, where results are presented 

for all PI ranked groups by claim type at the three-digit NAICS level). Additional aggregate 

data by four- and five-digit NAICS codes will be available on the OHBWC website (https://

www.bwc.ohio.gov/employer/forms/publications/nlbwc/SafeHygPubs1.asp?

txtCID=675537372).

Other Prioritization Criteria—Box plots of the distribution of claim rates among five-

digit NAICS industries within each of the six largest NORA sectors by intervention category 

and claim type are presented in Fig. 5A to F. The most variable distribution of industry rates 

in most sectors was observed for OTHtotal and OTHlost-time, which include a broad range of 

events/exposures. The Construction sector had the least variability (narrowest interquartile 

range) for ERGO claim rates, whereas Healthcare had the most variability. Comparing 

intervention category priorities within sectors based on variability, point estimates, and 

skewedness, etc lead to different conclusions by sector. For example, across all intervention 

categories, lost-time rates in the Services sector were relatively low, with similar IQRs 

(magnitude and width), but highly variable rate ranges, especially for ERGO claims. Among 

all OHBWC industries, one services industry, Dance Companies (NAICS = 71112), had the 

highest rates for ERGOtotal (23.66 claims per 100 estimated FTE-years) and STFtotal (10.85 

claims per 100 estimated FTE-years). However, the PI rank for their industry group, 

Performing Arts Companies (NAICS = 7111), was not high (ERGOtotal PI rank = 31 and 

STFtotal PI rank= 43). Similarly, lost-time Transportation claim rates were relatively 

variable, with overlapping lost-time IQRs for all three intervention categories. One 

Transportation industry, School and Employee Bus Transportation (NAICS = 48541) had the 

second highest STFlost-time and ninth highest OTH lost-time claim rates overall. However, the 

Transportation sector OTHtotal IQR was wider and did not overlap the ERGOtotal IQR. 

Whereas in the Manufacturing sector, STFlost-time IQR was lower and did not overlap with 

ERGOlost-time or OTHlost-time, which both included more extreme outliers (ERGOlost-time 

max = 1.37, STFlost-time max = 0.84, and OTHlost-time max = 1.36 claims per 100 estimated 

FTE-years).

DISCUSSION

This article presents an example of using machine learning for epidemiologic surveillance of 

occupational injuries. We developed methods and presented results from a surveillance 

system that leverages the efficiency of machine learning techniques to automatically code 

intervention category for over 1 million WC claim records. Those data by intervention 

category have been combined with UI data to calculate WC claim counts and rates by 

intervention category, NAICS codes, and NORA sectors. Other investigators have also used 

occupational injury data from multiple linked sources to provide more comprehensive 

surveillance by industry or external cause.2,36–39

Meyers et al. Page 12

J Occup Environ Med. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://links.lww.com/JOM/A374
http://links.lww.com/JOM/A375
http://links.lww.com/JOM/A375
https://www.bwc.ohio.gov/employer/forms/publications/nlbwc/SafeHygPubs1.asp?txtCID=675537372
https://www.bwc.ohio.gov/employer/forms/publications/nlbwc/SafeHygPubs1.asp?txtCID=675537372
https://www.bwc.ohio.gov/employer/forms/publications/nlbwc/SafeHygPubs1.asp?txtCID=675537372


PI results for NAICS subsectors, industry groups, and industries were presented to guide 

prevention and research efforts in Ohio by identifying industry-specific priorities for 

preventing ergonomic hazards, and STF hazards. This is the first time that WC claim counts 

and rates per FTE by NAICS industry codes and intervention category have been published 

using OHBWC data. Only a few highly ranked industry groups for ERGO lost-time, STF 

lost-time, and OTHlost-time claims are included in the results presented in the main manuscript; 

however, aggregate online tabular data by intervention category, claim type, and subsector 

(three-digit NAICS) are available in supplementary online files (Supplemental Tables 5 and 

6, http://links.lww.com/JOM/A374 and http://links.lww.com/JOM/A375). Additional 

aggregate data by four- and five-digit NAICS codes will be available on the OHBWC 

website (https://www.bwc.ohio.gov/employer/forms/publications/nlbwc/SafeHygPubs1.asp?

txtCID=675537372).

Objective 1: Auto-coding WC Claims by Intervention Category

Over the last two decades, injury surveillance studies have successfully applied increasingly 

sophisticated machine learning techniques to code unstructured narrative text data found in 

administrative databases, such as WC insurance databases.27,40–44 The number of records 

auto-coded in this study surpasses other studies that have used narrative data to code external 

cause of injury data using auto-coding or semi-automatic coding.40,41 The simplicity of the 

intervention categories used for this study made it possible to use auto-coding almost 

exclusively on the OHBWC claims (>99%) with 90% accuracy.23 Improvements to the auto-

coder addressed several limitations of the pilot version.23 However, the improvements had 

only slight impacts on overall accuracy (down 0.1%), sensitivity (down 0.7% to 1.7%), or 

PPV (ERGO up 1.6%, STF up 1.5%, OTH down 1.1%). Manually coding a sample of claims 

from each NORA sector created a way to measure and ensure coding performance across all 

sectors. Semi-automatic coding that combines auto-coding and manual coding is useful for 

coding more challenging narratives or for coding by more detailed categories, such as two-

digit OIICS event/exposure codes. For several years, Liberty Mutual used semi-automatic 

coding on WC claims to identify the two-digit OIICS event/exposure code used to create 

their annual Workplace Safety Index.42,45 BLS has tested autocoding methods on SOII data 

with promising results comparable to or better than manual coding accuracy.46,47

Analyses of 6 years of semi-automatically coded OHBWC lost-time claims by one and two-

digit OIICS event/exposure categories and by industry codes are underway. BLS tested the 

newest version of the program against 1000 randomly selected SOII narratives with 

promising results.35 SAS code and word probabilities used for auto-coding have been shared 

with other researchers and health departments with some success.48–50 For example, Yamin 

et al48 used the three intervention category auto-coding program on 4268 WC claims in the 

metal manufacturing sub-sector to identify OTH WC claims for manual review.

Objective 2: Occupational Injury Surveillance System by Intervention Category

In our previous publication,24 industry-specific claim count and claim rate results were 

presented, but not by intervention category. Findings from this study support previous 

conclusions that state-based WC data can be useful to 1) complement BLS data, 2) build 

injury surveillance capacity, and 3) prioritize injury prevention strategies within states. State 
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differences in WC systems and industry mix limit between-state comparisons. The injury 

surveillance system using the OHBWC data shares the same basic features found in 

surveillance systems that include external cause from BLS SOII data and W-L&I (eg, claim 

rates by FTE, claims involving DAW, and reporting by NAICS codes). However, several 

systematic differences24 preclude direct comparisons. For example, only private employers’ 

insured by the OHBWC were included in this study, whereas W-L&I and BLS SOII 

included private, public, and some self-insured employer data. Also, these OHBWC results 

include both medical-only claims with 0 to 7 DAW and lost-time claims with more than 7 

DAW. Results by external cause from BLS SOII and W-L&I account for injuries with one or 

more and four or more DAW, respectively. Two major strengths of this study were that the 

data are a population of employers, rather than a small sample (eg, 4000 for Ohio SOII), and 

the large number of employer policy-years (>1.9 million, representing >326,000 unique 

policies) were aggregated across 11 years, which provided adequate numbers of employers 

to report data across almost all combinations of NAICS codes used in Ohio. Despite these 

differences, we made limited comparisons between the 2011 OHBWC ERGOlost-time and 

STFlost-time results and US BLS SOII4,51–53 (2011 and 2014), Ohio BLS SOII (2014), and 

W-L&I WC claims results (2002 to 2010).51,54,55

Claim Counts by Intervention Category—About two-thirds of OHBWC lost-time 

claims were assigned to the ERGOlost-time or STFlost-time intervention categories. One-third 

of total OHBWC claims were categorized as sprains/strains, of which 54% were caused by 

ergonomic hazards and 35% were caused by STFs. According to BLS, about the same 

proportion of sprains/strains, or tears also may have been prevented by ergonomic or STF 

interventions nationally. Overall, these proportions supported the a priori decision to focus 

on soft tissue musculoskeletal WC claims and were consistent with BLS results, despite 

differences among the systems.

Claim Rates by Intervention Category and Time Period—A similar pattern of 

decreasing WC claim counts and rates was observed in all three intervention categories, with 

consistent decreases from 2001 to 2008, a sharper decrease from 2008 to 2009, followed by 

an increase in 2010, and a return to rates 2008 or less by 2011. Similar trends in 

occupational injury counts and rates were reported in our previous publication24 and have 

been reported by BLS, NCCI, and W-L&I.51,56–59 Yearly declines for STF claim rates were 

more gradual than ERGO rates, which declined twice as fast per year from 2001 to 2008, 

and overall, ERGO rates decreased 19% more than STF rates from 2001 to 2011. The same 

trend was observed in BLS where, from 2003 to 2010, BLS-defined ergonomic WMSD rates 

showed a larger decrease than BLS STF rates.60

Temporary Workers—In WC insurance, industry classification rules assign a temporary 

workers’ WC claim to the employer of record, the temporary agency. In contrast, OSHA 

recordables for temporary workers are recorded on the OSHA log for the establishment 

where the incident occurred, the host employer. Therefore, the SOII classifies these cases 

under the industry classification code for the host employer. OHBWC results for the 

Temporary Help Services industry (NAICS = 56132) and its parent industry group, 

Employment Services (NAICS = 5613), are a useful way to assess occupational injury risk 
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for this large group of vulnerable workers. In this study, Employment Services ranked in the 

top 25 PI for five of six combinations of claim type and intervention category (not OTHtotal), 

mostly due to the influence of Temporary Help Services, a large group of almost one-half 

million FTE-years across 11 years. The Employment Services industry group was also in the 

W-L&I top 25 PI for several categories.55 In contrast, BLS rate and count data for BLS-

defined ergonomic WMSDs in Temporary Help Services were ranked low in 2011 and were 

not published for 2014, due to small sample sizes.4,51,52,61

Objective 3: Prioritizing Ergonomic and Safety Intervention Efforts by NAICS Codes

For this study, the main objective for providing prioritization data by NAICS codes was to 

identify and share results captured in the OHBWC system by intervention category with 

stakeholders to use for prevention purposes according to their needs. Presenting results for 

total OHBWC WC claims by combining medical-only (0 to 7 DAW) with lost-time (8 or 

more DAW) claims was one unique contribution of this study. This study emphasized the 

more severe, lost-time results in the main tables because the top quartile of PI-ranked 

industry groups was almost identical for total claims and lost-time PI results by intervention 

category. However, PI results for total claims provided some indication of risk by 

intervention category for smaller industry groups that did not fit our inclusion criteria for 

lost-time comparisons.

High PI-Ranked Industry Groups—For several industry groups, we observed relatively 

consistent high PI ranks across two or three intervention categories. Knowing that more than 

one intervention category was prioritized provides a compelling reason to devise prevention 

plans including outreach and training efforts along with engineering controls, according to 

the ranks of the industry groups and their associated intervention categories.

The three industry groups with the highest PI rank in one of the intervention categories were 

also in the top 10 for at least one other category: General Freight Trucking (NAICS = 4841) 

was ranked highest for STFs and ranked eighth and third for ERGO and OTH, respectively; 

Skilled Nursing Facilities (NAICS = 6231) was ranked highest for ERGO and fifth for STF; 

and Foundries was ranked highest for OTHs and third for ERGO. All three of these industry 

groups have also been identified as high risk in one or more categories by BLS and W-L&I.
4,52,55

The PI weights claim counts and claim rates equally. This may be a reasonable weighting, 

but it is somewhat arbitrary, so it was useful to examine how industry group size (number of 

estimated FTE-years) influenced PI ranks. High PI ranks can be attributable to a high claim 

count rank only, a high claim rate only, or both. For example, Foundation, Structure, and 

Building Exterior Contractors (NAICS = 2381) was a large employer group (95th percentile 

by industry group size) in Ohio and its PI rank results were high in Ohio for lost-time and 

total claims in all intervention categories, due to high claim count ranks. Despite differences 

between W-L&I and BLS, Foundation, Structure, and Building Exterior Contractors were 

also ranked highly in both systems in 2011 and 2014.4,51,52,54,55,61,62

Plastics Product Manufacturing (NAICS = 3261) was another relatively large industry group 

in Ohio that ranked in the top 25 PI for ERGO and OTH intervention categories due to high 
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claim counts. Ohio is one of several Midwestern states with relatively large populations of 

workers in Plastics Product Manufacturing,63 but elsewhere the relatively small industry 

group was not prioritized by W-L&I or BLS as a high-risk group for occupational injuries.

Waste Collection (NAICS = 5621 or 56211), a medium-sized industry group, was ranked 

highly for all three OHBWC intervention categories, mostly attributable to high rate ranks. 

Waste Collection also had high rates in Washington State and the U.S.4,52,54,55

Small Size, High-Risk—Three, small, high-risk NORA sectors (Agriculture, Mining, and 

Oil & Gas) were not well represented in this study of private employer WC claims. Police 

departments, fire departments, and other high-risk Public Safety industries were also 

excluded from this study. Public Safety includes one NAICS industry code with private 

employers—Ambulance Services (NAICS = 62191). Ambulance Services ERGO PI ranks 

and rates were high in OHBWC, BLS, and W-L&I, although the latter were much lower in 

comparison. More detailed analyses of Ambulance Services OHBWC claims have been 

completed and will provide more detailed insights to prevent injuries among these workers.

Because large groups can dominate PI rankings, some small industry groups with low PI 

ranks were identified as priorities after examining outliers in the boxplots of claim rates by 

industries within NORA sectors. For example, School and Employee Bus Transportation 

(NAICS = 4854 and 48541) was a very small industry group (eighth percentile of FTE-

years) with the highest STF claim rates ranks in the Transportation sector and some of the 

highest STF and OTH rates overall. BLS and W-L&I did not rank the group highly. The 

reasons for these high rates in Ohio are unclear. Despite low PI ranks, very high claim rates 

for School and Employee Bus Transportation justify further investigation of the less than 

700 STF claims, a relatively small project. If further investigation suggests that effective 

interventions already exist, then intervening among this group of less than 50 employers can 

be done quickly with impactful results.

PI Strengths and Limitations—The PI is a simple, one-dimensional, easily interpreted, 

ordinal prioritization method that ranks industry groups by the average of each group’s ranks 

for claim count and claim rate. The simplicity of using and interpreting PI ranks for 

prioritizing prevention activities is the method’s main strength and main limitation. PI 

equally weights the importance of claim rate and claim count ranks, but the burden of 

injuries in large industry groups with high claim counts clearly influences the ranked results. 

The results are easy to interpret and easy to compare to occupational injury surveillance 

reports from W-L&I or to manually calculated PI ranks using publicly available BLS SOII 

data. However, simplifying quantitative results across several dimensions does not take into 

account other reasons for prioritizing one group over another (eg, small, high rate 

industries). The boxplots presented in this study added depth to our analysis by providing a 

visual representation of the distribution and variability of rates within sectors at the five-digit 

NAICS level. We could identify small industries with high claim rates, which otherwise may 

be overlooked due to aggregating data by industry group. Within-sector risk by intervention 

category varies by sector, by intervention category, and by claim type. In the Transportation 

sector, the OTH category was higher priority than ERGO. More detailed analysis of 

causation within OTH would be needed to prioritize resources to understand the relative 
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importance of transportation incidents, for example, compared with other external causes. 

For this study, highly ranked PI industry groups and claim rates were presented visually 

using bubble plots. The bubble plots were used to examine how the magnitude of industry 

group size, claim rate, and claim counts influenced a group of “high risk” industry groups. 

Further research is needed to develop improved quantitative prioritization techniques that 

take into consideration other attributes and more sophisticated data visualization. This study 

has provided aggregate data online for each intervention category by subsector (three-digit 

NAICS) to allow readers to examine and organize the data to meet their objectives. 

Additional tabular data by four- and five-digit NAICS will be available on the OHBWC 

website. Employer- or claim-level data cannot be shared publicly, but OHBWC can use 

employer-level data internally to identify specific employers to target for ergonomic or 

safety consulting services by looking at policy-level variability within the same industry or 

manual classification category.

Lastly, PI calculations prioritize among cases captured within a given system. WC data can 

be used to prioritize resources for preventing incidents caused by exposure to ergonomic 

hazards or other safety hazards that cause WMSDs and traumatic injuries. Results presented 

in this analysis do not estimate the overall burden of occupational injury and illness. In 

summary, the PI is useful but has several limitations. Future research is needed to develop 

and test more nuanced, quantitative methods for prioritizing limited prevention resources. 

Tailored approaches for different NORA sectors or other worker populations would be 

beneficial, given the differences observed in this study.

Study Limitations

Employer size: Despite its strengths, this study is subject to several limitations. First, the 

study population excludes large, self-insured employers. This may introduce a source of 

differential error because self-insured employers are not evenly distributed across NORA 

sectors and industry groups. Limiting results to employers insured by the State’s Bureau of 

Worker’ Compensation may not accurately represent claim rates for all employers when a 

NAICS industry code includes many self-insured employers (eg, hospitals, large retail trade 

chains). In such cases, the results may under- or overestimate rates for specific NAICS 

industry codes. However, excluding large employers can help focus occupational safety and 

health surveillance on relatively smaller employers who experience a greater burden of 

occupational injuries than large employers.64

Under-reporting: All occupational injury surveillance systems are missing some injuries. In 

the literature, under-reporting rates for WC insurance data, BLS SOII, and OSHA logs are 

disproportionately higher for BLS-defined ergonomic WMSDs not due to a sudden injury 

when compared with other injury types.39,65–68 Reported overlap between SOII records and 

WC claims in Washington, California, and Michigan range from 41% to 90%. Also, more 

severe, lost-time injuries are more likely to be reported.14–16 There are several factors that 

could have influenced our results by industry classifications.8,68–70 For example, it has been 

shown that union members; blue-collar occupations; hourly workers; and workers in 

Manufacturing, Transportation, and Trade sectors are more likely to report a BLS-defined 

ergonomic WMSD or injury WC claim. In addition, a few studies37,69 have also examined 
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under-reporting by external cause for traumatic injuries.15,65 In the present study, some 

under-reporting of injuries is more likely for medical-only claims, the ERGO intervention 

category, or within NORA sectors with lower WC reporting rates (eg, Agriculture, 

Construction, and Mining NORA sectors). We reported that yearly ERGO claim rates 

decreased faster than STF and OTH claim rates. However, during the peak of the recession 

in five of the largest NORA sectors, STF rates from 2008 to 2009 decreased more than 

ERGO rates among all claim type and intervention category combinations (excluding 

Healthcare STFtotal). One purpose of this study was to make comparisons and set priorities 

within each NORA sector, or within one broad NAICS code (eg, three-digit subsectors). As 

one of the primary goals of this study was to identify higher risk companies by intervention 

type within sectors, differential reporting rates observed among intervention types or sectors 

would not affect achieving this goal.

Measures of Claim Severity: The OHBWC data warehouse is a proprietary, private, 

administrative database designed for claims management and does not precisely track DAW 

for medical-only claims. Methods to gather more detailed information on DAW have been 

explored but remain unresolved and this was a limitation of our study. Future work on 

disability type, injury diagnoses, expanded PI calculations, and claims costs should provide 

alternate measures for more targeted prioritization.

Three Intervention Categories: Our decision to use a set of three, simple intervention 

categories for this analysis is another limitation of this study. We can make few inferences 

about over half of the total claims in our study population coded as OTH. However, our a 

priori objective was to focus on interventions for soft tissue musculoskeletal outcomes 

caused by ergonomic hazards or STF hazards, and this simple categorization system allowed 

us to achieve that goal efficiently and with enough specificity to inform prevention efforts. 

This is especially true for industry comparisons among small employers with few WC 

claims. Future work will include analysis of lost-time claims by OIICS one- or two-digit 

event/exposure categories.

Intervention Category Misclassification: Possible differential misclassification of 

intervention category in this study as a result of using auto-coding rather than manual coding 

is unlikely. Small differences in percent accuracy compared with manually coded claims 

were not problematic because both methods were highly accurate. The positive predictive 

value for the ERGO intervention category was 9% higher than for the STF category. 

However, any resulting misclassification would be non-differential misclassification with 

respect to industry classification codes and would not be expected to create bias in rates by 

intervention category. Lower sensitivity and PPV for auto-coded results seem attributable to 

poor performance coding slips and trips without falls. In our recently published auto-coding 

results using the same Bayesian model, sensitivity and PPV for “slips/trips without a fall” 

were 37% and 41%, respectively, whereas sensitivity for “falls on the same level” and “falls 

to lower level” were ~73% and PPVs were more than 60%.

Recently, the BLS started to use semi-automatic coding to improve the efficiency of coding 

SOII data.46,47 Auto-coding methods can be used by researchers and practitioners to relieve 

the manual burden of reading and classifying each claim narrative. Other researchers and 
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public health practitioners have had some success using our SAS auto-coding program and 

word probabilities from unstructured narrative text information from first reports of injury 

data.48–50

The decision to model the ERGO category on the BLS-defined ergonomic WMSD case 

definition using only the most severe diagnosis was more than adequate. Considering only 

the most severe diagnosis did not have any appreciable effect on the accuracy of auto-coding 

over 1 million claims, as only three claims may have been misclassified because secondary 

diagnoses were not included in our ERGO case definition.

Timeliness: As is standard in the WC industry and to maintain rigorous research standards, 

a lag of at least 2 years is used to allow WC data to “mature” before analysis for publication. 

In Ohio, injured workers have up to 2 years to file a claim, and changes to claim status 

(medical-only vs lost-time) can occur within that time frame. This study was less timely than 

BLS SOII reports; however, the consistency of PI trends across time by four-digit NAICS 

subsector leads us to believe that the highest priorities in 2011 are still high priorities today. 

Furthermore, despite many underlying differences compared with BLS, many of the same 

industry groups identified in this article were also ranked highly by BLS in 2014. 

Subsequent analyses from this study population will also include claim costs, which require 

approximately 2 to 3 years of development to begin to stabilize. However, this does not 

preclude OHBWC from using their most recent claims data internally as benchmarks for 

their clients.

CONCLUSION

This study focused on identifying ergonomic and STF intervention needs by NAICS codes 

using OHBWC WC data for 2001 to 2011. To accomplish this objective, first, our previously 

developed auto-coding pilot program was improved before application to this large, 

multisector database. Aggregate tabular data have been shared online to provide useful 

summary information to understand and prioritize prevention efforts. Consistent with injury 

data from other US data sources, the count and rate of WC claims has decreased 

significantly from 2001 to 2011; however, decreases in claim counts and rates varied by 

intervention category and industry group. For many high-risk OHBWC industry groups, 

results were consistent with national BLS data and WC data from the state of Washington. 

OHBWC results should be used primarily for planning occupational health prevention and 

research activities in Ohio. Each of these surveillance systems has their own strengths and 

weaknesses. Regardless, currently BLS, W-L&I, and now OHBWC are the only three, major 

U.S. occupational injury surveillance systems that present similar data. These results 

highlight the importance of classifying industry-specific claims into intervention categories 

to target prevention efforts. Due to variability between and within NORA sectors, three-, 

four-, and five-digit NAICS codes, the most appropriate prioritization techniques is likely to 

vary by worker population.

This article presented methodology and results from the second of several planned 

epidemiologic surveillance studies using multisector WC data from OHBWC. Other studies 

underway will provide more detailed analyses of intervention categories within NORA 
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sectors, within a specific industry group (eg, Ambulance Services, Temporary Help 

Services), by diagnosis, and by claim costs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to acknowledge the contributions of Lisa Thomas, Kathy Waters, and Patty Laber (NIOSH); 
John P. Sestito, (NIOSH, retired); Mark Lehto (Purdue University); and Helen R. Marucci-Wellman and Helen L. 
Corns (formerly of the Center for Injury Epidemiology, Liberty Mutual Research Institute for Safety).

This research was supported by intramural funds, awarded as part of a competitive process within the U.S. National 
Institute for Occupational Safety and Health.

The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the 
National Institute for Occupational Safety and Health or the Ohio Bureau of Workers’ Compensation.

Appendix

A. Abbreviations

• Agriculture=Agriculture, Forestry & Fishing NORA sector

• BLS=Bureau of Labor Statistics

• DAW=days away from work

• ERGO=BLS-defined WMSDs caused by ergonomic hazards using the case 

definition for this study

• [ERGO/STF/OTH]lost-time=lost-time claims for the given intervention category 

(>7 DAW)

• [ERGO/STF/OTH]total=total claims for the given intervention category (medical-

only and lost-time)

• FTE=full-time equivalent employee

• Healthcare=Healthcare and Social Assistance NORA sector

• ICD-9-CM=International Classifications of Diseases, Ninth Revision, Clinical 

Modification

• LPC = BLS Labor Productivity and Costs program

• NAICS = North American Industry Classification System

• NIOSH = National Institute for Occupational Safety and Health

• NORA = National Occupational Research Agenda

• OHBWC = Ohio Bureau of Workers’ Compensation

• OIICS = BLS Occupational Injury and Illness Classification System

• OSHA = Occupational Safety and Health Administration
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• OTH=all other interventions combined (NOT ERGO or STF)

• PI = Prevention Index

• RTW= return-to-work

• SOII = BLS Survey of Occupational Injuries and Illnesses

• STF = slip/trip/fall

• Trade = Wholesale and Retail Trade NORA sector

• Transportation = Transportation, Warehousing, and Utilities NORA sector

• UI = unemployment insurance

• WC = workers’ compensation

• W-L&I = Washington State Department of Labor and Industries

• BLS-defined WMSD = work-related musculoskeletal disorders due to ergonomic 

hazards as defined by the BLS

B. Manually Coded Claims

For this study, the first step was to manually code more claims. Each claim was consensus 

coded by at least two manual coders in accordance with case definitions described 

previously for ERGO, STF, or OTH. Manual coders used the 57 Optimal RTW diagnosis 

codes and read the brief unstructured accident narratives to assign an intervention category 

to each claim.

Auto-coded intervention categories were overridden by manually coded intervention 

categories for 1% of claims (N = 11,755) as follows.

• Compared with the pilot study, 7200 additional randomly selected claims were 

used to train and test the auto-coder, for a total of 9600 (800 randomly selected 

claims per month—400 lost-time and 400 medical-only, across all years).

• Second, claims with rare (<200, N = 2155) or under-represented (<20 claims) 

diagnosis categories were manually coded because it is less likely that the 

Bayesian method would accurately predict intervention category for these 

diagnoses. For under-represented claims, 50 randomly selected examples from 

the 10 under-represented categories (N = 500, 50 per category) were manually 

coded and the results were used to update the prediction probability scores.

• When there was not enough information available for manual coders to assign an 

intervention category, the claim was considered unclassifiable and we retained 

that classification in the final analyses (N = 127, 0.01%).

• When coders disagreed on a final intervention category, the claim was excluded 

from the training set and an auto-coded value was used instead (N = 32, 0.03%).
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• Notations in Table 1 identify diagnosis categories that were manually coded for 

intervention category due to rarity (a) or uncommon (b) diagnosis categories that 

were under-represented in the training set (<20 claims).

C. Case Definition Exceptions

The two exceptions to the BLS OIICS coding rules for STFs from Division 4 (slips, trips, 

and falls)26 used in the NIOSH STF case definition were as follows:

1. Claims caused by events or exposures due to a single episode of overexertion/

bodily reaction due to climbing down, stepping down, loss of balance, or 

missteps (classified as “Overexertion and Bodily Reaction” event/exposures 

codes) were classified as STFs for this study instead of ERGOs. The reasoning 

behind this modification to the BLS case definition was that this type of event 

pertains to the interaction of the foot with the supporting surface, and might be 

prevented in a similar manner as STF events (such as through modifications to 

surface composition and texture, contamination, footwear, or body mechanics). 

For example, a sprained ankle where the narrative was “stepped off of forklift 

and twisted right ankle” was classified as a STF. These rare incidents account for 

less than 1% of all claims and less than 4% of all STF claims.

2. Claims caused by stepping on an object that did not result in a puncture wound (a 

“Contact with Objects and Equipment” code) were coded as STFs instead of 

OTHs. We made this exception because interventions designed to reduce STF 

events, such as improved housekeeping and organization of materials, could also 

be used to prevent these injuries. BLS OIICS coding would typically place 

injuries caused by stepping on an object, not resulting in a puncture wound, as a 

“struck by object or equipment,” event.
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FIGURE 1. 
(A–C) Yearly claim rates per 100 estimated FTEyears for the five largest NORA sectors by 

intervention category, for lost-time claims, 2001–2011: (A) ERGO, Ergonomic intervention 

category that includes BLS-defined work-related musculoskeletal disorders caused by 

ergonomic hazards; (B) STF, slip, trip, or fall intervention category; and (C) OTH, other 

intervention category. Notes: Rates current as of February 2017. Services sector, Services 

(except Public Safety); Trade sector, Wholesale Trade/Retail Trade; Healthcare sector, 

Healthcare and Social Assistance; lost-time claims, 8 or more days away from work.
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FIGURE 2. 
High-priority NAICS industry groups (four-digit codes) for lost-time ERGO claims for the 

top 25 by Prevention Index rankings and top 10 by claim rates, 2001–2011. Note: Data 

current as of February 2017. Bubble size is based on the estimated number of FTE-years. 

Lost-time claims, 8 or more days away from work. ERGO, Ergonomic intervention category 

(includes BLS-defined work-related musculoskeletal disorders caused by ergonomic 

hazards).
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FIGURE 3. 
High-priority NAICS industry groups (four-digit codes) for lost-time STF claims for the top 

25 by Prevention Index rankings and top 10 by claim rates, 2001– 2011. Note: Data current 

as of February 2017. Bubble size is based on the estimated number of FTE-years. Lost-time 

claims, 8 or more days away from work. STF, Slip, trip, or fall intervention category.
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FIGURE 4. 
High-priority NAICS industry groups (four-digit codes) for lost-time OTH claims for the top 

25 by Prevention Index rankings and top 10 by claim rates, 2001–2011. Note: Data current 

as of February 2017. Bubble size is based on the estimated number of FTE-years. Lost-time 

claims, 8 or more days away from work. OTH, Other intervention category.
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FIGURE 5. 
(A–F) Box-plot charts* of the distribution of industry (five-digit NAICS) claim rates per 100 

estimated FTE-years per NORA† sector for the five largest NORA sectors, aggregated for 

the time period 2001–2011, presented by intervention category and claim type: (A) 

ERGOlost-time, (B) ERGOtotal, (C) STFlost-time, (D) STFtotal, (E) OTHlost-time, (F) OTHtotal. 

Notes: The Ergonomic intervention category includes BLS-defined work-related 

musculoskeletal disorders caused by ergonomic hazards. Data current as of February 2017. 

FTE, full-time equivalent employee (2000 hours/year); Healthcare sector, Healthcare and 
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Social Assistance; lost-time claims, 8 or more days away from work; NORA, National 

Occupational Research Agenda; OTH, all other; Services sector, Services (except Public 

Safety); STF, slip, trip or fall; Transportation sector, Transportation, Warehousing, Utilities; 

Trade sector, Wholesale Trade/Retail Trade. *Box plots lower whisker, minimum rate; bar, 

interquartile range where the dark shade, the 25th percentile to median and light shade, 

median to 75th percentile; upper whisker, maximum rate, except the Services Total claims 

maximum rates for ERGO (23.66) and STF (10.85), and the Manufacturing Total claims rate 

for OTH (15.0, for Ferrous Metal Foundries, NAICS = 33151) are not shown. Both extreme 

Services sector outliers were for Dance Companies, NAICS = 71112. †Among privately 

owned employers in Ohio with single and multiple locations.
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